

Modelling reliable electrical conductors for e-textile circuits on polyamide filaments.

E-Textiles 2019: International Conference on the Challenges, Opportunities, Innovations and Applications in Electronic Textiles

Presenter: Dr Abiodun Komolafe

Overview

- » Early forms of conductors and problems
- » Conductors in the research domain
- » State of the art e-textile conductors
- » CBT model of filament circuit
- » Bending Results
- » Effect of encapsulation on NA and stiffness
- » Conclusion

Early forms of e-textile conductors

LifeShirt Recorder saves data to ECG leads compact flash memory card e band respiratory Abdominal band measures respiration

a. The Lifeshirt by Vivometrics (2001)

Southampton tecnalia Inspiring Business Beneficials Applications & MANDERVICTURE

b. ICD+suit by Levi and Phillips Electronics (2003)

c. Solar powered SCOTT eVest (2004)

OAbalonyx

screentec

AALBORG UNIVER

ECHNISCHE UNIVERSITÄT

Problems of early prototypes

» E-textiles

- » Integrated wires are very bulky
- » Enclosed conventional portable electronics into pockets within the textile.
- » Can be uncomfortable to wear over extended periods due to the rigidity and accumulative weights of enclosed electronics.
- » Can lack desired fashion or aesthetics
- » Electronics need to be detached before washing

E-textile conductors in the research domain

Thin enamelled copper wires

Screen printed silver inks and Polyurethane encapsulation Southampton tecnalia

Embroidered silver coated threads

Stretchable interconnects from STELLA project

Inspiring Bematerials Z

Heated transferred conductive fabrics

Screen printed capacitor and resistor

CHNISCHE UNIVERSITÄT

OAbalonyx

screentec

AALBORG UNIVE

State of the art e-textile at UoS

- » Wearable e-textiles with filament circuits
 - » Knitting or weaving of electronic filament circuits ((< 2mm wide) into fabrics during manufacture
 - » Improves wearability of emerging fabrics after electronic integration
 - » reliable process for manufacturing etextiles of different garment sizes
 - » Post integration, prototypes survive up to 45 wash cycles and more than 1500 bending cycles

Southampton tecnalia Inspiring Business Beneficials Applications & NAMOSTRUCTURES

HNISCHE UNIVERSITÄ

Abalonyx
Innovative materials
screentec

Results from bending

Cracking of copper film

Buckling of copper film

Effect of encapsulation on the NA

» Encapsulation only shifts the position of NA within the copper layer

Screentec

HNISCHE UNIVERSITÄ

» The stress is uniformly distributed within the copper film

Southampton tecnalia Inspiring Business Beneficials Applications & NANOSTRUCTURES

Encapsulation thickness and Modulus

OAbalonyx

screentec

ECHNISCHE UNIVERSITÄT

» Encapsulation thickness reduces with the increase in elastic modulus

Southampton tecnalia Inspiring Business Beneficials Applications & NANOSTRUCTURES

- » Elastomers (3 $MPa \le E \le 300 MPa$) are not suitable for tuning the NA position due to the high thickness requirement.
- » At lower thicknesses (≤ 100 µm), elastomers physically protect the copper film from abrasion or moisture without any change in the filament stiffness and the NA position

Effect of encapsulation on filament stiffness

Materials	Thickness, t (μm)	Width, x (mm)	Elastic Modulus E (CRa)	Filament Stiffness, nNm ²		
				Before	After	
			L (GFu)	Encapsulation	Encapsulation	
Apical Polyimide	25	2	3			
Thermoplastic Adhesive	17	0.2	1.8			
Copper	18	0.2	70			$1 \frac{n}{n}$
	Encapsulati	ion materials	;1			Stiffness $-\frac{1}{1}\sum_{F,r,t^3}$
PEEK	35	2	3.8		41.9	$\frac{5tijjtess}{12} = \frac{12}{12} \sum_{i=1}^{L_i \times L_i} \frac{12}{12} \sum_{i=$
Mylar	40	2	3.1		47.8	i
Thermoplastic						
polyurethane (VPT	8000	2	0.001	14.8	8548	
Apical Polyimide	40	2	3		46.8	

¹ The reported thickness shifts the NA to the center of the copper film. ²Supplied by Covestro

Southampton tecnalia Inspiring Business Beneficials And Contractions & ANDOSTRUCTURES

» Filament stiffness triples with materials such as Polymide (E = 3 GPa)
 » Elastomers increases stiffness significantly (up to 8000 times)

OAbalonyx

screentec

Conclusions

» Encapsulations are necessary for enhancing the durability of filament circuits

- » For polyimide filaments containing 18 µm thick copper films, the encapsulation material improves durability by ensuring the induced stress is uniformly distributed within the copper. It does not position the entire film on the NA
- » The entire copper film can be positioned on or close to the NA where the stress is minimum by reducing its thickness significantly ($\leq 1\mu m$).
- » In both cases, the same encapsulation thickness is required, and the stiffness of the encapsulated filament is up to three times the value before encapsulation
- » Encapsulants such as PEEK, polyamide and mylar (E ≈ 3 GPa), a thickness of 40 μ m is enough to place the copper film on the NA the filament or e-textiles

Abalonux

screentec

Thank you

More Information

https://wearplex.soton.ac.uk/

https://www.linkedin.com/company/wearplex-project

https://twitter.com/wearplex

https://www.instagram.com/wearplexproject/

https://www.youtube.com/channel/UCER_bp0sOqU3N5j0CW-B9dA/

